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Abstract. The scientific requirements for the basic angle stability and the
monitoring of basic angle variations are reviewed in light of the need for absolute
parallax determination, which is a primary goal of Gaia. Requirements are
proposed for the random and systematic basic angle variations, and for the
measurement of these variations.

1 Introduction

The present requirement for the stability of the basic angle is 7 µas rms over 6 hours.
This number was derived by assuming that the basic-angle fluctuations contribute as a
random noise in the astrometric error budget. This is approximately true for most kinds
of basic-angle fluctuations on a time scale shorter than the spin period. However, it was
pointed out in GAIA–LL–052 that there is one specific mode of basic-angle variation that
is perfectly correlated with the astrometric parameters and in fact cannot be distinguished
from a global shift in the parallax zero point. A significant such shift is incompatible with
the overall scientific requirements of Gaia (cf. Appendix). A more detailed specification
was therefore proposed in GAIA–LL–052 (Rev. 1, 8 May 2004), in which a separate (and
much stricter) requirement was put on the relevant mode of variation.

However, it appears difficult from an engineering viewpoint to guarantee that this partic-
ular requirement will be satisfied. An alternative route has therefore been explored, which
should make it possible to relax the stability requirement to an acceptable level while fully
satisfying the scientific requirements. The present document aims to describe the problem
more precisely, outline the methods available for its solution, and propose a revised set of
requirements based on a combination of these methods.

2 Physical origin of a parallax bias

Random variations of the basic angle produce along-scan errors in the field transits that
generally propagate to the astrometric parameters in a similar way as most other noise
sources, such as photon noise: a certain ‘coefficient of improvement’ (much less than
unity) applies, thanks to the statistical averaging-out of errors from the many scans across
the same object. However, this may not apply to errors that are not truly ‘random’.
In particular, any error whose size and direction are somehow related to the geometry
of the satellite with respect to the Sun might systematically affect the determination of
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Figure 1: (Left) The parallactic displacement p of a star’s celestial position is always
along a great-circle arc from the star towards the Sun. The size of the displacement is
given by Eq. (1) and depends on the angle θ between the star and the Sun.

Figure 2: (Right) Geometry of the Gaia Astro instrument (xyz axes and viewing
directions p, f) with respect to the Sun (s), defining the angles ξ (solar aspect angle), γ
(basic angle), and Ω (heliotropic spin phase).

parallaxes. The reason is simply that parallax itself is an effect of the satellite’s motion
around the Sun, manifested in the apparent displacement of a star’s celestial position
towards the Sun (Fig. 1). The displacement is

p = πR sin θ (1)

where π is the parallax of the star, R the distance of the observer from the Sun expressed
in astronomical units (AU), and θ the angle between the star and the Sun. For Gaia, R
varies between 0.993 and 1.027, but for simplicity we ignore this variation in the following
and use the mean value R = 1.01 (at L2).

To describe the geometry of the instrument with respect to the Sun we use notations as
in Fig. 2. The spin relative to the Sun is given by the heliotropic spin phase Ω, which
increases at an approximately constant rate of 60 arcsec s−1.

In order to see how a bias in the parallax measurements could arise, imagine that all stellar
parallaxes are artificially increased by a small amount δπ (the same for every star). Using
simple geometry it is straightforward to derive the observable effects, in the astrometric
fields, of such a shift. We then ask what particular variation of the instrument would
completely ‘absorb’ the effects of δπ. Then, if the instrument actually behaves in that
way, without our knowing it, there would of course be no observed effects of the parallax
shift and all derived parallaxes would be too small by the amount δπ. In other words,
that particular instrument variation would produce a global parallax bias of ∆π = −δπ.
(Global, in this context, means that it is the same for all stars; cf. Appendix.)
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Figure 3: (Left) The short arrows at p and f show the observable effects of a (positive)
parallax shift in the case when Ω = 0.

Figure 4: (Right) The observable effects of a (positive) parallax shift in the case when
Ω = 180◦.

Figures 3 and 4 illustrate the observable effects of the parallax shift δπ in the two cases
when Ω = 0 and 180◦. As drawn in the figures, δπ > 0. Let us first look at the case Ω = 0
(Fig. 3). In the spherical triangle fzs we have

sin θ sin η = sin ξ sin(γ/2)
sin θ cos η = cos ξ

}
(f -field; Ω = 0) (2)

The along- and across-scan components of the parallactic displacement are

p‖ = δπR sin θ sin η = δπR sin ξ sin(γ/2)
p⊥ = δπR sin θ cos η = δπR cos ξ

}
(f -field; Ω = 0) (3)

In the p-field, the same formulae apply if γ/2 is replaced by −γ/2. It is seen that the
effects of both displacements (in the p and f fields) can be completely absorbed by the
following two changes: (i) the basic angle is decreased by the amount 2δπR sin ξ sin(γ/2),
and (ii) the instrument is tilted an angle −δπR cos ξ/ cos(γ/2) about the y axis.1 The
second change is of course accommodated by the attitude determination.

Let us then consider the case Ω = 180◦ (Fig. 4). We find

p‖ = −δπR sin θ sin η = −δπR sin ξ sin(γ/2)
p⊥ = δπR sin θ cos η = δπR cos ξ

}
(f -field; Ω = 180◦) (4)

1Strictly speaking, there are differential effects within each field of view that could in principle be used
to disentangle a change in the basic angle from a parallax shift. However, the differential effects are about
a factor 100 smaller than the total shifts (because the field size is of order 0.01 radian), and therefore in
practice unobservable.
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while for the p-field the sign of γ/2 should again be reversed. It is seen that the effect
can be absorbed if (i) the basic angle is increased by 2δπR sin ξ sin(γ/2), and (ii) the
instrument is tilted an angle −δπR cos ξ/ cos(γ/2) about the y axis.

Thus, for Ω = 0 and 180◦ the along-scan effects of the parallax shift can be absorbed by
a variation of γ by ∓2δπR sin ξ sin(γ/2). It is easy to show (cf. GAIA–LL–052) that these
cases are just the extremes of a perfectly cosinusoidal variation with the heliotropic spin
phase Ω. That is, a basic-angle variation according to

∆γ(Ω) = −2δπR sin ξ sin(γ/2) cosΩ (5)

would completely absorb the parallax shift δπ in all along-scan observations. Conversely,
if the instrument experiences a variation according to

γ(Ω) = γ0 + a1 cosΩ (6)

there will be a global parallax bias of

∆π =
a1

2R sin ξ sin(γ/2)
(7)

(since ∆π = −δπ), or ∆π ' 0.847 a1 for ξ = 50◦, γ = 99.4◦, and R = 1.01 AU.2

A systematic basic-angle variation of the form (6) could be produced by the changing
thermal impact of the solar radiation during the satellite spin, for instance if there is a
slight asymmetry of the sunshield with respect to the spin axis. This clearly makes it
necessary to put a separate requirement on the a1 term, as opposed to general basic-angle
fluctuations.

3 General basic-angle fluctuations

The basic angle (γ) is one of the geometrical calibration parameters routinely determined
as part of the normal Gaia data analysis. Certain variations of the basic angle can also
be determined by introducing the corresponding parameters, such as polynomial coeffi-
cients, as unknowns in the data analysis. Here I will briefly discuss the limitations of this
procedure.

Let B(f) be the one-sided power spectral density of γ(t) (so that
∫∞
0 B(f)dt = σ2

γ is the
total variance of the basic-angle fluctuations). It can be assumed that B(t) is continuous
with superposed spikes e.g. at the harmonics fk = k/P of the spin period P (= 6 hr in
the current design).

The geometrical basis for the determination of γ is the closure condition on each completed
great-circle scan. Thus, in principle, we can obtain one independent determination of γ for
each spin period. If there are no basic-angle variations at frequencies above the Nyquist
frequency fNy = (2P )−1, then it follows from the sampling theorem that γ(t) can be
completely recovered from the measured data. Consequently, we only need to consider the

2This is the same as Eq. (11) in GAIA–LL–052, in which however R was implicitly set to 1.
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‘high-frequency’ part of B(f), i.e., for f > fNy. This includes all the harmonics fk of the
spin period.

According to the preceding analysis, a basic angle variation of the form (6) gives exactly
the same observational results as a global shift of the parallaxes. Since the parallaxes
are unknowns to be determined as part of the data analysis, it follows that a1 cannot be
introduced as an additional unknown, lest the problem becomes under-determined. Thus,
B(f1) (or at least the cosine component of the variations at f1) is unobservable.

Concerning the remaining part of B(f) at f > fNy, that is excluding f1, limited experience
with the Hipparcos data analysis suggests that also this can in principle be recovered in
the data analysis, although only through combination of data from the whole mission. The
accuracy and convergence properties of such a determination in the GIS scheme are how-
ever completely unknown. For this reason, the conservative assumption must be adopted,
namely that such basic-angle fluctuations remain undetermined and thus contribute to the
error budget. This applies to both the continuous and discrete components of the power
spectrum.

In GAIA–LL–052 (Rev. 1) the error propagation from basic-angle fluctuations to parallax
was considered in some detail, although only for the discrete frequencies fk. It is possible
to define, at least approximately, a filter function Kγ(f) such that the rms contribution
to the final parallax error is

σπ,ba =
(∫ ∞

0
B(f)Kγ(f)df

)1/2

(8)

We can assume that Kγ(f) = 0 for f < fNy, as discussed above. The filter factor is
different for each harmonic of the spin, depending on the value of γ. For example, with
γ = 99.4◦, variations at f4 and f7 are less damped than at f1 and f2 due to the approximate
commensurabilities 4γ ∼ 1 rev and 7γ ∼ 2 rev. Actually, the function Kγ(f) is not very
well known as it depends on the detailed modelling of γ(t) in the data analysis which is still
undefined. However, since B(f) will be steeply decreasing at high frequencies (f > 1/τ ,
where the thermal time constant τ is of order several hours, TBC), it should be safe to
assume that Kγ(f) = Kγ(f1) for f > fNy. Based on numbers from GAIA–LL–052, and
the fact that COIπ ∝ N

−1/2
transit(R sin ξ)−1, we find

σπ,ba =
(3.26/Ntransit)1/2

2R sin ξ sin(γ/2)

(∫ ∞

1/(2P )
B(f)df

)1/2

(9)

where, for the current (Gaia-2) design Ntransit = 90, R = 1.01, ξ = 50◦, γ = 99.4◦, and
P = 6 hr, leading to a numerical factor 0.161 in front of the square-root of the integral.

4 Methods to constrain or eliminate a global parallax bias

Given that a1 and a global parallax shift are observationally indistinguishable, there are
basically three methods that can be used to constrain or eliminate such a global parallax
bias: (i) constraining a1 by design; (ii) measuring a1 by dedicated hardware; or (iii)
measuring ∆π by astrophysical modelling. Each method is briefly discussed below.
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4.1 Constraining a1 by design

According to (7), requiring an upper limit on |a1| is equivalent to a limit on |∆π|. As ex-
plained in the Appendix, different astrophysical applications have different requirements in
terms of the parallax zero point. For some astrophysical problems a limit of |∆π| < 0.1 µas
may be desirable. But a corresponding requirement on |a1| could probably never be guar-
anteed, at least within the current design paradigm of Gaia. It is therefore clear that the
science goals cannot entirely rely on a stability requirement, but should be supplemented
through the other methods described below. We may then ask what is the maximum
limit on |∆π| that would still make sense for (at least some of) the science goals. I would
put this limit at 2 µas, corresponding to 10% of the currently predicted random error at
15th magnitude. At this bias level, the individual parallaxes would still be astrophysically
useful and allow a lot of important science to be carried out, while it would clearly be
detrimental for other applications such as the mean parallaxes of distant clusters.

4.2 Measuring a1 by dedicated hardware

It is foreseen that Gaia will include a Basic Angle Monitoring (BAM) device, capable
of monitoring changes in γ to a significantly higher precision than the general stability
requirement. Such a device should clearly be capable to determine a1, as well as other
components of the (high frequency) variations, by proper spacing and precision of mea-
surements. Note that the BAM device cannot, and need not, measure the absolute value
of the basic angle, only its variation over a time scale of minutes to days.

To allow determination of γ(t) at frequency f1, the sampling frequency must be at least
2f1. However, this assumes that there are no fluctuations at higher frequencies that could
contribute to the measured a1 through aliasing. To guarantee ‘clean’ determination of a1

in the presence of random fluctuations, a much higher sampling frequency is needed. The
required oversampling factor depends on the bandwidth of the actual fluctuations, but a
factor N = 12 (say) would appear safe. This means that the maximum interval between
BAM readings should be P/(2N) = 15 min in the current design. If each reading is made
with precision εγ (excluding bias term, assumed to be constant over at least a whole spin
period), then all harmonic coefficients ak, bk of order k = 1, 2, . . . N can be determined
with accuracy ε(ai) = ε(bi) = εγN−1/2.

Thus, if 24 BAM readings at 0.5 µas precision are taken in every spin, then a1 can be
determined to about 0.15 µas per spin. This should be sufficient to guarantee that, after
correction for the measured variations in the data analysis, the residual mission-wide a1

term is less than 0.1 µas, corresponding to less than 0.1 µas global parallax bias.

4.3 Measuring ∆π by astrophysical modelling

A global parallax bias could be revealed by inconsistent parallaxes for objects at very
great distances or with known distance ratios. In principle the procedure to determine
∆π is straightforward, but in reality it may be quite hard to achieve an accuracy of order
0.1 µas. Two examples are briefly considered here, mainly to illustrate the difficulties.
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The simplest way would be to look at the measured parallaxes for objects that are distant
enough to have negligible parallax. Quasars are the most obvious choice, because they are
at cosmological distances (e.g., redshift z > 0.01 implies parallax < 0.03 µas), more or less
pointlike, and relatively easy to distinguish from stars by their variability, colours, and
absence of proper motion. They are, however, faint: of the ∼ 400 000 quasars that will be
observed by Gaia down to 20th magnitude, 75% are fainter than 19th mag, 21% between
19th and 18th mag, and only 4% brighter than 18th mag. Potentially, they could jointly
define the parallax zero point to an accuracy of about 0.2 µas. However, even a small
fraction of contaminating stars could upset this determination. For instance, it can be
estimated that there are some 100 000 faint stars, mostly in the Galactic halo, that have
parallaxes and proper motions below 1.5 standard errors. Their mean parallax is around
100 µas. Thus, if only 1% of these stars were mistaken for quasars, they would bias the zero
point determination by as much as 0.25 µas. Stellar contamination is insidious because
it consistently works in the direction of increasing the mean parallax of the sample; by
comparison, other problems intrinsic to the quasars, such as (variable) source structure,
may increase the scatter but without biasing the mean observed parallax of the quasars.

An alternative way, which we may call the distance ratio method, uses photometrically es-
timated distance ratios to determine the parallax zero point. It is based on the assumption
that stars with intrinsically identical properties (or samples with identical distribution of
properties) can be identified at widely different distances. As an example, let us suppose
that we observe a certain type of stars in the Milky Way, at a mean distance of 1 kpc and
hence with measured parallax of order πG ∼ 1000 µas, and that the same type can also be
observed in the Magellanic Clouds at ∼ 50 kpc or πMC ∼ 20 µas. The apparent magnitude
difference, after correction for interstellar extinction, provides an estimate of the true dis-
tance ratio X, which should equal the inverse parallax ratio after correction for the zero
point error: X = (πG−∆π)/(πMC−∆π). Given X, πG and πMC we can compute ∆π. It
can be seen that, in this particular example, an error in the photometrically determined
distance ratio by 1% would give an error of 0.2 µas in ∆π. Considering extinction and
possible differences in chemical composition, such an accuracy may actually be difficult to
achieve. On the other hand, there may be many independent such ways to estimate ∆π.

In conclusion, astrophysical modelling is likely to determine the parallax zero point to an
accuracy much better than 1 µas, and through a concerted effort perhaps even to 0.1 µas.
The relevant scientific working groups should consider this problem.
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5 Conclusion: Proposed requirements

A reasonable strategy will be to combine the three methods discussed above for maxi-
mum benefit: the stability requirement should guarantee an upper limit to |∆π| that is
acceptable for at least some of the science goals; the BAM should measure a1 to sufficient
accuracy to allow adequate correction of the data and for understanding the short-term
behaviour of basic-angle variations; finally, several astrophysical methods should be used
to check and determine the zero point independently.

Specifically, the following scientific requirements are proposed:

1. The short-term variation of the basic angle, as defined by the power spectral density
integrated from (2P )−1 to infinity, where P is the nominal spin period, shall be less
than 7 µas rms.

2. The variation of the basic angle γ depending on the heliotropic spin phase Ω (defined
as in Fig. 2) shall satisfy

∣∣∣(1/π)
∫ 2π
0 γ(Ω) cos Ω dΩ

∣∣∣ < 2 µas.

3. Variations of the basic angle shall be monitored in flight. After suppression of
frequencies below (2P )−1, where P is the nominal spin period, the rms measurement
error shall be less than 0.5 µas per 15 min interval.

Notes:

1. With current (Gaia-2) parameters, this requirement corresponds to a random contri-
bution of σπ,ba < 1.13 µas to the end-of-mission standard error in parallax, according
to Eq. (9).

2. By Fourier series analysis, a1 = (1/π)
∫ 2π
0 γ(Ω) cosΩ dΩ, so the requirement is

equivalent to |a1| < 2 µas. With current (Gaia-2) parameters, it corresponds to
|∆π| < 1.69 µas according to Eq. (7).

3. With current (Gaia-2) parameters, this requirement means that a1 can be measured
with standard error < 0.15 µas per spin period.
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Appendix: Bias and the astrophysical use of parallax data

The primary scientific requirements for Gaia have been formulated in terms of the standard
(rms) errors of the astrometric parameters, in particular the parallax.3 The bias (or
systematic error) is usually assumed to be small by comparison. However, it is important
to somehow formulate a requirement also on the bias. This is quite difficult because biases
may occur in a wide range of varieties, some of them more harmful than others, and
also because the demarcation between ‘systematic’ and ‘random’ errors is to some extent
arbitrary.

For example, instrument chromaticity may cause the parallax estimate for a given star
(i) to be biased, depending on its colour. That is, if the observations were repeated
many times under identical circumstances (but of course with different realizations of the
photon noise and other truly random errors), the different parallax estimates resulting for
this particular star would cluster around a value E[π̂i] that deviates from the true parallax
π̄i. This is the abstract statistical meaning of bias, where the expectation operator E is
interpreted as the ensemble average.

However, in the practical world Gaia will not be repeated (much less many times), and it
makes more sense to define bias in terms of sample statistics. For instance, consider all
stars (j) with approximately the same colour as i. Do we expect the individual parallax
errors π̂j − π̄j to cluster around a value significantly different from zero? Probably not,
at least not due to chromaticity, because the different stars are observed under different
geometrical conditions which tend to average out any systematic shifts in the measured
along-scan coordinates, which is where the chromaticity occurs. Thus 〈bj〉 ' 0, where
angular brackets denote the sample average. On the other hand, 〈b2

j 〉 > 0 and would
therefore properly be included in the error budget. In other words, what is considered
a systematic error (bias) for the individual star may be considered a random error (part
of the standard error) for the sample. Similar considerations apply for other possible
sources of systematic errors, e.g. from the geometrical calibration, CTI characteristics of
the CCDs, or the attitude determination.

Using sample statistics to characterize an estimator immediately leads to the question:
What constitutes a sample? From the astrophysical viewpoint this depends entirely on
the scientific problem being addressed. Very often, we want to limit the sample to include
only stars in a certain region of the sky, e.g., a stellar cluster or nearby galaxy. If the
region is small enough, say less than a degree, it is very probable that 〈bj〉 6= 0, since stars
within a small area of the sky tend to be observed with similar scanning geometry. In
this case we may want to consider 〈bj〉 as a ‘local systematic error’ – but over how large
area? – or we may think of it as spatially correlated errors and try to characterize them
by means of a spatial correlation function.

The scientific importance of a possible parallax bias can be illustrated by a single example.
The Large Magellanic Cloud (LMC) is one of the nearest and best-studied of the galaxies
in the Local Group. Its distance (around 50 kpc, or 20 µas parallax) is an important step

3The standard error is the square root of the estimated variance of a statistic. A statistic is a quantity
computed from observed data, e.g. the estimated parallax (π̂) of a star. With π̄ denoting true parallax,
we have the bias b = E[π̂]− π̄, variance σ2 = E[(π̂ − E[π̂])2], and standard error s = (E[σ2])1/2 of π̂.
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on the extragalactic distance scale. At present, the distance uncertainty is thought to be
about 5%. Gaia will be able to observe of the order of 107 stars in the LMC, most of
them faint (G > 19 mag). If the parallax of each star can be determined with a standard
error of about 200 µas, then the potential precision of the mean parallax of the LMC
is 200 × 10−3.5 ' 0.06 µas, corresponding to a relative precision of 0.3%. In reality the
uncertainty of the mean parallax will be entirely determined by the level of systematic
errors. For instance, if the local systematic error in the region of the LMC is (say) 1 µas,
then the resulting relative distance uncertainty from Gaia will be 5%, and nothing is
gained compared to the present knowledge. (Of course, Gaia would still contribute a lot
to the distance scale, including the LMC distance, in many other ways.) Many similar
examples can be given involving various open and globular clusters, dwarf galaxies, etc.
There is thus a strong scientific interest to keep the parallax bias (however it is defined)
well below 1 µas, and preferably at the 0.1 µas level.

While the precise meaning of parallax bias may vary according to the astrophysical context,
the Gaia scientific requirements need to be formulated in terms of completely well-defined
quantities. Since the Gaia data processing is not part of the responsibility of the industry,
it is moreover necessary to specify how these quantities are to be derived from more
fundamental data. The following two definitions may be useful: (i) The global parallax bias
is ∆π ≡ 〈π̂j − π̄j〉, where the average is taken over all the observed stars (j), irrespective
of their colour and magnitude. (ii) The chromatic parallax bias is the σπ,chr given by
Eq. (10) in GAIA–LL–053 (8 May 2004). The requirements discussed in this note concern
the global parallax bias.
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