
Attitude parameterization for GAIA

L. Lindegren (1 July 2000)

SAG{LL{30

Abstract. The GAIA attaitude may be described by four continuous func-

tions of time, q1(t), q2(t), q3(t), q4(t), which form a quaternion of approximately

unit length. The quaternion formalism is elegant and computationally eÆcient,

reducing the use of trigonometric functions to a minimum. As examples of the

use of quaternions, I discuss the nominal scanning law, the inertial rotation

of the instrument, and the determination of the instantaneous attitude from

direction measurements.

1 Introduction

The nominal scanning law (NSL) proposed for GAIA is descibed in SAG{LL{014, 014A

and 026. The real attitude of GAIA should follow the NSL at least to within a few

arcmin. For Hipparcos, the attitude was described di�erentially relative the NSL by

means of three Euler angles. This allowed to use the minimum possible number of attitude

parameters (i.e., 3) while avoiding singularities, and allowed the real-time control to be

formulated linearly in the (small) Euler angles. However, for the accurate a posteriori

attitude determination it lead to rather complicated relations e.g. between the object

directions in the reference (celestial) frame and instrument frame, and in the accurate

physical modelling of the satellite motion. For GAIA, it will be advantageous to adopt an

attitude parameterization which directly relates the reference and instrument directions,

and I propose that quaternions are ideal for this.

2 De�nition of attitude

Let the triad N = [l m n] represent the celestrial reference frame (ICRF). That is, l is

a unit vector towards (�; Æ) = (0; 0), n a unit vector towards Æ = 90Æ, and m = n � l

to complete the right-handed triad. Similarly, let Z = [x y z] represent the instrument

system, with x bisecting the two astrometric viewing directions, z along the nominal

spin axis, and y = z � x. At a give time t, let u be the proper direction to a celestial

object (i.e., the `observable' satellitocentric direction including gravitational de
ection

and aberration). Given astrometric data and the barycentric position and velocity of the

satellite, the components of u in the reference frame are known, i.e. the 3 � 1 matrix

N0u = [ul um un]
0. By observing the object, we measure (at least in principle and for a

fully calibrated instrument) its components in the instrument frame, i.e. the 3� 1 matrix
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Z0u = [ux uy uz]
0. The attitude at time t is the mapping fromN0u to Z0u for the arbitrary

direction u. The mapping is most directly speci�ed by the 3� 3 attitude matrix A:2
64 ux
uy
uz

3
75 = A

2
64 ul
um
un

3
75 : (1)

Equivalently, we may de�ne A = Z0N. The attitude matrix is a real, proper orthogonal

matrix (AA0 = I, jAj = +1). The inverse relation is therefore2
64 ul
um
un

3
75 = A0

2
64 ux
uy
uz

3
75 : (2)

3 Attitude parameterization

The attitude of GAIA could be represented by the continuous function A(t), or rather

by the nine continuous functions Aij(t), i; j = 1; 2; 3. However, this is not very conve-

nient, because of the strong redundancy implied by the orthogonality (the nine functions

would have to satisfy six orthogonality constraints). Alternatively, the attitude could be

described by just three continuous functions, e.g. the Euler angles �(t), �(t),  (t) with

respect to N, de�ned in some suitable sequence (there are 12 di�erent ways to do this).

This eliminates the redundancy problem but inevitably leads to singularity problems for

certain values of �. A third possibility, which (almost) eliminates both problems, is to use

the quaternion representation q(t), also known as the Euler symmetric parameters. This

formalism has been used extensively for spacecraft control and attitude determination, and

is also well-known in celestial mechanics. However, it is relatively unknown to astronomers

in general, and a brief summary is therefore provided below, based on J.R. Wertz [ed.],

Spacecraft attitude determination and control , ASSL Vol. 73, D. Reidel, 1978. (A slightly

di�erent formalism is described by Je�erys 1987, AJ 93, 755.)

4 Quaternion representation

Quaternions can be regarded as four-vectors, for which special rules of multiplication apply.

Speci�cally, let

a =

2
6664
a1
a2
a3
a4

3
7775 ; b =

2
6664
b1
b2
b3
b4

3
7775 (3)

be two quaternions; then the product c = ab is a quaternion with elements2
6664
c1
c2
c3
c4

3
7775 =

2
6664

b4 b3 �b2 b1
�b3 b4 b1 b2
b2 �b1 b4 b3

�b1 �b2 �b3 b4

3
7775
2
6664
a1
a2
a3
a4

3
7775 : (4)
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Note that the order of multiplication is important, and that it is di�erent in Eq. (4) than

in c = ab. The length of a quaternion is de�ned as jaj = (a2
1
+ a2

2
+ a2

3
+ a2

4
)1=2.

The instantaneous attitude may be represented by the quaternion

q =

2
6664
e1 sin(�=2)

e2 sin(�=2)

e3 sin(�=2)

cos(�=2)

3
7775 ; (5)

where e is a unit vector and � an angle. The physical interpretation is that a frame,

originally aligned with N, becomes aligned with Z after a rotation by the angle � about

the axis e. e1, e2 and e3 are the components of e in the original frame. Since e is a unit

vector, it follows that jqj = 1. Such a unimodular quaternion is also called a spinor .

Because of the constraint jqj = 1 there is one degree of redundancy in the quaternion

representation of the attitude. A simple way to deal with this is suggested below. On the

other hand, the quaternion representation has several advantages, e.g.:

� There are no singularities. The four functions qi(t) are perfectly well-behaved con-

tinuous functions of time.

� Successive rotations are represented by multiplications (from left to right) according

to the rule (4). This involves fewer arithmetic operations than the corresponding

multiplication of rotation matrices.

� The attitude matrix A is easily computed from q, without trigonometric functions

[see Eq. (7)].

� There are simple relations between the time derivative _q and the intertial rotation

vector [see Eqs. (8){(9)]; again these involve no trigonometric functions.

There is a sign ambiguity in the de�nition of q, in that a rotation by �� about �e is

equivalent to a rotation by � about e. To avoid discontinuities in qi(t) it is necessary to

choose the correct sign. This happens automatically if the attitude quaternion remains

close to the NSL quaternion de�ned in the next section.

The attitude q at a given instant can be estimated from a set of measurements of known

celestial directions in the instrument frame. In this process it is easy to incorporate the

constraint jqj = 1 by standard methods (e.g. using a Lagrangian multiplier; see Sect. 8).

In practice, the functions qi(t) need to be represented by suitable basis functions (poly-

nomials, trigonometric functions or splines) and it is then the coeÆcients of these basis

functions that have to be estimated. In such a formulation it is diÆcult guarantee that

jq(t)j = 1 for every t. The proposed solution is that (small) deviations from this condi-

tion are permitted, by formulating all transformations to take into account that q is not

necessarily of unit length.
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Figure 1. De�nition of angles �, �s, �, � and 
 in the nominal scanning law.

5 The nominal scanning law

The nominal scanning law for GAIA will be similar to that of Hipparcos, only with dif-

ferent constants. It is described by two constant angles (� = obliquity of equator, and

� = revolving angle), and three angles which increase continuously but non-uniformly

with time: �s(t) = nominal longitude of the Sun, �(t) = revolving phase, and 
(t) = spin

phase. See Fig. 1 for the de�nition of these angles.

As can be seen from the �gure, a frame initially aligned with N becomes aligned with the

nominal Z after the following sequence of rotations: (1) by � about the �rst axis; (2) by �s
about the third axis; (3) by � � 90Æ about the �rst axis; (4) by 90Æ � � about the second

axis; (5) by 
 about the third axis. In terms of quaternion multiplications, this gives:

q =

2
66664

sin 1

2
�

0

0

cos 1

2
�

3
77775

2
66664

0

0

sin 1

2
�s

cos 1

2
�s

3
77775

2
66664

sin 1

2
(� � 90Æ)

0

0

cos 1

2
(� � 90Æ)

3
77775

2
66664

0

sin 1

2
(90Æ � �)

0

cos 1

2
(90Æ � �)

3
77775

2
66664

0

0

sin 1

2



cos 1

2



3
77775 : (6)

The precise speci�cation of the functions �s(t), �(t) and 
(t) remains to be done (although

part of the discussion was made in SAG{LL{014), but the general principles are easily

stated:

1. �s(t) should be a reasonably simple analytical function which approximates the
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satellitocentric proper direction to the sun to within the tolerances set by accepted

variations in the true solar angle (probably some arcmin). This may be more com-

plicated than for Hipparcos, due to the tighter tolerances for GAIA and the L2

orbit.

2. Given �s(t), the function �(t) should then be chosen to give a (nearly) constant

precession rate j _zj. The required precession rate is set by the loop overlap condition

discussed in SAG{LL{014.

3. Finally, for given �s(t) and �(t), the function 
(t) is chosen to give constant inertial

rotation rate about the instrument z axis, !z = 120 arcsec s�1.

6 The attitude matrix

In terms of the components of the quaternion, the attitude matrix is

A(q) =
1

s

2
664
q2
1
� q2

2
� q2

3
+ q2

4
2(q1q2 + q3q4) 2(q1q3 � q2q4)

2(q1q2 � q3q4) �q2
1
+ q2

2
� q2

3
+ q2

4
2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 � q1q4) �q2
1
� q2

2
+ q2

3
+ q2

4

3
775 ; (7)

where s = jq(t)j2. The normalization factor allows for the possible non-unit length of q.

7 The inertial rotation vector

Let ! denote the inertial rotation vector of the satellite. Its components in the instrument

system are Z0

! = [!x !y !z]
0. In the quaternion formalism, the kinematic equations are:

_q =
1

2

2
66664

0 !z �!y !x

�!z 0 !x !y

!y �!x 0 !z

�!x �!y �!z 0

3
77775q : (8)

This equation actually assumes that jqj = 1. If q is not normalized, introduce s(t) =

jq(t)j2. Then Eq. (8) is modi�ed in that the diagonal elements of the matrix become equal

to _s=s. If _s is negligible, then Eq. (8) remains valid also for the non-normalized q.

Equation (8) can be inverted to give ! in the instrument frame:2
664
!x

!y

!z

3
775 =

2

s

2
664

q4 q3 �q2 �q1

�q3 q4 q1 �q2

q2 �q1 q4 �q3

3
775 _q : (9)

This is strictly valid also when _s 6= 0. The rotation vector in this frame is needed to

compute the scan rates along and across scan at di�erent points of the �elds, and it is

therefore essential that it can be computed accurately and simply.
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The rotation vector in the celestial frame is obtained from Eq. (9) and the attitude matrix,

N0

! =

2
664
!l

!m

!n

3
775 = A0

2
664
!x

!y

!z

3
775 : (10)

Combining Eqs. (7) and (9) we obtain after some algebra2
664
!l

!m

!n

3
775 =

2

s

2
664

q4 �q3 q2 �q1

q3 q4 �q1 �q2

�q2 q1 q4 �q3

3
775 _q : (11)

The simplicity of Eqs. (9) and (11) is a good illustration of the compact elegance of the

quaternion formalism.

8 Attitude determination

As part of the `global iterative solution' we need to determine q(t) from the following

data: (i) a set of known celestial directions (computed from a star catalogue); (ii) the CCD

observations of these directions; and (iii) a calibration of the instrument parameters. As

already mentioned, the four components of q(t) must be expressed as continuous functions,

whose coeÆcients (`attitude parameters') are to be determined. In this section I consider

brie
y the more limited problem, viz. how to determine the instantaneous attitude q from

a set of (quasi-simultaneous) measurements.

Each measurement is essentially an association of a certain time instant t with certain

angular coordinates (�; �) in the instrument frame (Fig. 2), relating to a certain direction

u. For instance, t could be the observed transit time of a star (with known N0u) at

a certain CCD column, whose central coordinates (�; �) are known from the instrument

calibration. Let us see how this translates into observation equations for q. Since the

measurements are non-linear functions of q, it is necessary to linearize. Let q0 be the

current attitude estimate, which in the next iteration is improved to q = q0 +�q. From

N0u and A(q0) we obtain the calculated direction Z0u and hence the calculated (�; �)

from the relation

ux = cos � cos �

uy = cos � sin�

uz = sin �

9>>=
>>; (12)

The di�erences �� cos �, ��, taken in the sense observed minus calculated, can now be

related to �q by means of a di�erential rotation obtained in analogy with Eq. (9):

"
�� cos �

��

#
=

2

s
C

2
664

q4 q3 �q2 �q1

�q3 q4 q1 �q2

q2 �q1 q4 �q3

3
775�q ; (13)
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Figure 2. At a certain instant t the celestial direction u is observed at spherical

coordinates (�; �) in the instrument frame.

where C is �xed for a given CCD column:

C =

"
sin � cos � sin � sin � � cos �

� sin � cos � 0

#
: (14)

After normalization by the estimation errors �� cos � and �� , Eq. (13) gives two uncorre-

lated observation equations for each direction observed at the same time. Let h = B ��q

be the full set of such equations. The required solution minimizes jh�B ��qj2 subject to

the constraint q0
0
�q = 0 (to preserve the length of q). Using the method of Lagrangian

multiplier, the solution is obtained by the following steps. First, the normal+constraint

equations

(B0B) [ a b ] = [ B0h q0 ] (15)

are solved to give the four-vectors a and b. Then, the constrained solution is given by:

�q = a� b� ; where � =
q0a

q0b
: (16)

In the actual case the attitude is expressed in terms of basis functions, q(t) =
P

i akfk(t),

and ak are then the attitude parameters to be determined. In terms of the observation

equations (13), this is just a trivial modi�cation. However, it is not obvious if and how

normalization constraints should be introduced in the continuous case. Although many

details such as this remain to be worked out, I think it is clear that the use of quaternions

will have great advantages over alternative attitude parameterizations.

7


