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Abstract
This technical note describes the mathematical process used to solve a least square problem in space astrom-

etry that presents an Helmert blocking structure. We focus particularly on its implementation in ODAS. We
assume that the reader is familiar with the space astrometric least square problem. This document is based on [1]
and [2].

1 Mathematical description

1.1 Astrometric observations
In this document we refer to an observation with the term transit time t. For ODAS an observation is an observed
field angle. It can be the along scan η or the across scan ζ field angle. Note that each elementary contains along-
scan information, but for some transits, across-scan information may be missing. It is important that the code can
handle both cases.

Each observed transit time ti,j,k is associated with a specific object (e.g., a primary source i with astrometric
parameters si, for ODAS this is the source position (ε, R) in the reference great circle frame, and with certain atti-
tude (aj) and calibration (ck) parameters. A non-linear observation equation is associated with each observation:

ti,j,k − f(si, aj , ck) = ei,j,k, (1)

ei,j,k is the error due to imprecision in the model f , measurement errors, and so on. In particular one priori esti-
mation of the error σi,j,k is given for each observation. These estimations will be used to balance the observation
equations. The error should be small if our knowledge of the source, attitude and calibration parameters is good.
Note that f(s, a, c) is a highly non-linear but smooth function. Hence we will use a linear approximation around
some initial reference values s̄i, āj , c̄k. Let hsi , haj , hck

be the displacements around these reference values. Once
these values will have been computed they will be called updates, and the updated value will be si = xs̄i + hsi ,
aj = āj + haj , ck = c̄k + hck

.
Considering all observations, we get an over-determined system of linear equations in h, namely the observa-

tion equations
∀ti,j,k : Si,j,k hsi + Ai,j,k haj + Ci,j,k hck

= ri,j,k (+ei,j,k) (2)

with the residuals ri,j,k = ti,j,k − f(s̄i, āj , c̄k) and the Jacobian matrices Si,τ = (∂f/∂si)(s̄i, āj , c̄k), Ai,τ =
(∂f/∂aj)(s̄i, āj , c̄k), Ci,τ = (∂f/∂cj)(s̄i, āj , c̄k). A weight matrix Wi associated with the source i, it is a
diagonal matrix whose length is set by the number of observations available for the source i. Each element on
the diagonal is a positive real number equal to σ2

i,j,k/σ2
0 , where σ0 is a positive global (i.e. valid for all sources)

parameter.
Note that the astrometric observation equation for Gaia is set using two functions f1 and f2. More precisely

f1(ti,j,k, ck) − f2(si, aj) = ei,j,k, hence a factor minus appears in front of Ci,j,k = ∂f1/∂cj when setting the
astrometric design equation for Gaia, Si,j,k hsi + Ai,j,k haj − Ci,j,k hck

= ri,j,k.

1.2 Triangular structure
An important point is that there are many more source parameters than attitude and calibration parameters. From
Eq. (2) we see that the observation equations for different sources involve disjoint source parameter vectors si,
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while the attitude and calibration vectors aj , ck may overlap. Sorting all the observation equations (2) by the
source index i and collecting them in one matrix we get a non-square block angular matrix:

S1 0 . . . 0 O1

0 S2 . . . 0 O2

...
...

. . .
...

...
0 0 . . . Sn On




hs1

hs2

...
hsn

ho

 =


r1

r2

...
rn

 ⇔ Kh = r (3)

with n being the number of primary sources, the matrices and vector Si, Oi, ri being the concatenation of,
respectively, all Si,j,k, Oi,j,k = [Ai,j,k, Ci,j,k], ri,j,k, and ho being the vector of all attitude and calibration
displacement unknowns ho = [ha, hc]T .

1.3 The reduced normal matrix
The system (3) is over-determined: there are more equations than unknowns. Due to measurement errors, there
does not exist a solution that simultaneously satisfies all the equations. However, the problem becomes mathemat-
ically well posed when we try to minimise the norm of the post-fit residual vector, ‖r−Kh‖. This is the ordinary
least-squares problem, which is classically solved by forming the normal equations

KTWKh = KTWr (4)

or 

ST
1 W1S1 0 . . . 0 ST

1 W1O1

0 ST
2 W2S2 . . . 0 ST

2 W2O2

...
...

. . .
...

...
0 0 . . . ST

n WnSn ST
n WnOn

OT
1 W1S1 OT

2 W2S2 . . . OT
n WnSn

∑
i OT

i WiOi





hs1

hs2

...
hsn

ho


=



ST
1 W1r1

ST
2 W2r2

...
ST

n Wnrn∑
i OT

i Wiri


(5)

A standard way to handle normal equations with the block-diagonal-bordered structure of Eq. (5) is to suc-
cessively eliminate the unknowns along the block-diagonal (in our case the source parameters), leaving us with a
reduced normal equations system for the remaining unknowns (in our case the attitude and calibration parameters).
A straightforward computation shows that the solution of Eq. (5) can be accomplished by first solving the reduced
normal equations for the attitude parameters,[

n∑
i=1

(
OT

i WiOi −OT
i WiSi

(
ST

i WiSi

)−1
ST

i WiOi

)]
ho =

n∑
i=1

(
OT

i −OT
i WiSi

(
ST

i WiSi

)−1
ST

i

)
Wiri (6)

and then forwarding the solution ho to solve all the source equations

hsi =
(
ST

i WiSi

)−1
ST

i Wi (ri −Oi ho) . (7)

The reduced normal equation (6) will be denoted in a compact formulation by Mho = b, with M being the
reduced normal matrix and b the right hand side of the reduced normal equation.

The reduced normal equation is obtained by a sum over all sources. Hence the process of fill-in the reduced
normal equation is the same for each source. We have first to compute Si, Oi, Wi and ri, i.e. building the design
equation of the source being processed. Then we have to compute the contribution of the source i to the reduced
normal matrix, (

OT
i WiOi −OT

i WiSi

(
ST

i WiSi

)−1
ST

i WiOi

)
, (8)

and to the right hand side of the reduced normal equations(
OT

i −OT
i WiSi

(
ST

i WiSi

)−1
ST

i

)
Wiri. (9)

In order to do that efficiently, we have to use the sparseness structure of the design matrix Oi = [Ai, Ci].
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1.4 Constraints
Beside to the design equation the final problem contains linear constraints relative to some of the parameters ho.
A constraint is simply an other set of linear equations that the parameters should fullfil,

Hho = rH . (10)

There is two methods to manage linear constraints: introduce fictitious observations or use Lagrange multipliers.
Using the fictitious observations you should decide of the weight assigned to the constraints, whereas using the
Lagrange multiplier you compute the best fit for the weight. The two methods should be treated differently. In
the context of Helmert blocking algebra, if we assume that there is no constraint on the source unknowns, both
constraints can be added after the fill-in of the reduced normal matrix.

1.4.1 fictitious observations

Let σ > 0, be a weight factor for the constrains. The fictitious observation method consists in adding new
observation equation to the design matrix powdered by the weight σ. Since we assume no constraint on the source
parameters but only on some of the parameters ho, the fictitious observations appears as new terms that have to be
added to the reduced normal matrix. Instead of Mho = b, consider[

M + HTσ−1H
]
ho = b + HTσ−1rH . (11)

1.4.2 Lagrange multipliers

Whereas there is no new unknowns using fictitious observations, the number of unknowns is extended according
to the number of constraints, i.e. the number of lines in H , when the constraints are treated using Lagrange
multipliers. Again since we assume that only some of the parameters ho are constraint, the Lagrange multipliers k
can be added after the computation of the reduced normal matrix. This operation consist in adding new lines and
columns to the reduced normal equation. Instead of Mho = b, consider[

M H
HT 0

] [
ho

k

]
=

[
b

HTrH

]
. (12)

1.5 Statistics
The least squares method is famous due to the Gauss-Markoff theorem. This section summerizes the classical
statistical interpretation of the least squares method. The expected value of a random vector x is denoted by E[x]
and its covariance matrix by ν(x).

Assume that given M and y, there exists x such that y = M x. Assume that the observations are a vector of
random variables, y = y + e, with e the error vector of random variables. The vector x of parameters is related to
the vector y of observations by an over-determinate linear system M x = y. If the expected value of the error is
zero, E[e] = 0, if the covariance matrix of the error, ν(e) = W−1 with W positive definite, if the design matrix
M has rank n, the dimension of the parameter, then the best unbiased linear estimate for the parameter x is the
solution, x̂ = (MTWM)−1MTWy, of the weighted least squares problem, minx(M x − y)TW (M x − y). A
random vector x̂ function of the observation y is an unbiased estimate of the parameter x if E[x̂] = x.

The variance matrix ν(x̂) of the estimator x̂ is linked to the covariance matrix of the observations ν(y) = W−1

and the design matrix M
ν(x̂) = (MTWM)−1. (13)

The variance of the residual r̂ = y −M x̂ is linked to the covariance of the observations ν(e) = W−1 and the
design matrix M

ν(r̂) = (I −H)W−1(I −H), (14)

with the hat matrix H = M(MTWM)−1MT.

3



2 Toward an implementation
This section details a possible implementation of the computation presented above. This implementation is simply
a way to process the algebra using the sparseness structure based on the idea of storing only the non-zero columns.
It should be possible to use some sparse matrix libraries instead. But, since we have none knowledge about their
efficiency, it is rather preferable not to rely on them.

2.1 Notation
Be aware that in this section we remove the reference to the source i on the quantities r, O, S and W . Any indices
on such an object refer now to rows and/or columns. ri is the component i of the vector r. Oij is the component
on the row i at the column j of the matrix O.

2.2 Design equation of a source i

2.2.1 design matrix

The design matrix [S, O] of a sources i is a sparse matrix. In order to have an efficient implementation it is
important to exploit this property. Since the computation of the reduced normal matrix implies manipulation of
column vectors without referring explicitely to the rows orders a good choice is to store only the non-zero columns.
As we have seen previously the design matrix of a source i is the concatenation of S and O. The matrix S has
ns columns, ns being the number of source unknowns per source for ODAS its 2. These columns are assume to
be non zeros whereas the matrix O has a more complex structure. In order to construct the design matrix it is
sufficient to know the indices and the values of the non-zero columns.

In this section we make the following choice for the indices of the non-zero columns

indices = [−ns, . . . ,−1, . . . , indexj , . . .] . (15)

We choose negative index for columns corresponding to the matrix Si and positive index for matrix Oi. Moreover
we assume that the indices are ordered from the smaller to the larger, i.e. if j1 < j2 then indexj1 < indexj2 . This
choice simplify the fill-in of the reduced normal equation, see the step 3 in Section 2.3 Note that the positive indices
indexj referred to the order chosen for the other unknowns ho. If no denotes the number of other unknowns, i.e.
the length of the vector ho, then indexj < no.

This vector of indices is in one to one correspondence with the non-zero columns of the design matrix [S, O]:

columns = [c0, . . . , cns−1, . . . , cj , . . .] , (16)

through the map j → (indexj , cj) from {0, . . . , ncolumns} to Z × Rnrows . Each vector cj , 0 ≤ j < ncolumns,
has a length nrows with ncolumns the number of non-zero columns in the design matrix of the source i, and nrows

the number of observation equations for the source i.
It is important to understand that the indices of the non-zero columns correspond exactly to the unknowns that

contribute to the observation equation of the source i. But at this level of computation we should not care about
what they are!

2.2.2 right hand side

The right hand side r of the design equation is a vector of length nrows that contains the observed minus computed
values.

2.2.3 weight matrix

The weight matrix W is a vector w of length nrows that contains the prior errors made on the observations. i.e.
we assume uncorrelated observations with variance σi. Moreover we assume that the weight matrix has been
normalized, i.e. max wi = 1.
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2.3 Computation of the contribution of a source i to the reduced normal equation
Once the design equation of the source i as been set up, the process of computing the contribution of this source
to the reduced normal matrix can be done in 3 steps using 2 main variables a matrix M and a vector b:

1. setup,

M =
[
STWS STWO
OTWS OTWO

]
b =

[
STWr
OTWr

]
2. reduce.

M =

[
∗ ∗
∗

(
OTWO −OTWS

(
STWS

)−1
STWO

)]

b =

[
∗(

OT −OTWS
(
STWS

)−1
ST

)
Wr

]
3. fill-in the reduced normal equation composed of the reduced normal matrix M and the reduced normal right

hand side b.

The vector b is of length ncolumns, the number of non-zero columns in the design matrix of the source i.
The symmetric matrix M with ncolumns × ncolumns elements can also be stored within a vector of length

ncolumns(ncolumns + 1)/2. The element Mij of the upper triangular part of the matrix M on the row i, 0 ≤
i < ncolumns, at the column j, i ≤ j < ncolumns being at the position i + j(j + 1)/2 on the vector, 0 ≤
i + j(j + 1)/2 < ncolumns(ncolumns + 1)/2.

2.3.1 setup

1: M ← 0 {initialization}
2: b← 0
3: for i = 0; i < ncolumns; i++ do
4: x← ci

5: for k = 0; k < nrows; k++ do
6: Mij ←Mij + xkwkxk

7: bi ← bi + xkwkrk

8: end for
9: for j = i + 1; j < ncolumns; j++ do

10: y ← cj

11: for k = 0; k < nrows; k++ do
12: Mij ←Mij + xkwkyk

13: end for
14: end for
15: end for

2.3.2 reduce

Require: ncolumns ≥ ns

1: for i = 0; i < ns, i++ do
2: if Mii 6= 0 then
3: for j = i + 1; j < ncolumns; j++ do
4: for k = i + 1; k ≤ j; k++ do
5: Mkj ←Mkj −MikMij/Mii

6: end for
7: bj ← bj −Mijbi/Mii

8: end for
9: end if

10: end for
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2.3.3 fill-in

1: for i = ns; i < ncolumns, i++ do
2: I ← indices(i) {depend on the choice made at (15)}
3: bI ← bI + bi

4: for j = i; j < ncolumns, j++ do
5: J ← indices(j) {depend on the choice made at (15)}
6: MIJ ←MIJ + Mij

7: end for
8: end for

2.4 Add the constraints
The constraints are specific to the modelization of the problem. As such they should be defined at the same
time than the parameters ho. As pointed out in Section 1.4 the software should be flexible enough to treat some
constraints with the fictitious observation method (11) and some with the Lagrange multipliers method (12). Note
that whereas the fictitious observation method does not change the structure of the reduced normal equation,
Mx = b, the Lagrange multiplier method extends the number of unknowns. Hence, the size of the reduced
normal matrix should have been properly defined to handle the constraints.

2.5 Solve the reduced normal equation

Any linear solver that returns a solution ĥo of the linear equation Mx = b. Note that the covariance matrix of the
estimator ĥo is simply

νĥo
= M−1. (17)

2.6 Back substitution
Once the solution of the reduced normal matrix as been computed, the back substitution process can start, i.e. for
each source compute the result ĥs of the matrix product (7). Moreover we are also interested in other quantities
that reflect the quality of the updates. These computations are important for the treatment of outliers.

For each sources, we propose the following values:

• Source parameter estimator
ĥs =

(
STWS

)−1
STW (r −O ho) (18)

• Covariance of the source parameter estimator

νĥs
=

(
(STWS)−1STW

) [
OM−1OT

] (
(STWS)−1STW

)T
(19)

• Residuals estimator
r̂ = r −Oĥo − Sĥs (20)

• Covariance of the residuals estimator

νr̂ = W−1 −OM−1OT − S(STWS)−1ST (21)

All these computation can be performed using classical matrix vector operations.

3 Remarks
• This document has been designed to support the ODAS development. In a close future it will be included

in the ODAS documentation.

• This document does not consider the back-rotation since this process refers to the particular nature of the
source.
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• As well, we have not discuss the data model (or extended data model) and the constraints used to computed
the one day astronomical solution because it is important that the code depends the least possible of such a
choice. Our choice has been to separate the Helmert algebraic operations from the specific choice of a data
model such that the code can be reused for other computation such that a ring to sphere.
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